TonyYin's Blog

Back

题意

给定正整数 nn,请找出一个合法的三元组 (x,y,z)(x, y, z),满足:

1x+1y+1z=2n\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{n}

要求:x,y,zZ+x, y, z\in \Bbb{Z}^+ 且互不相同。

1n1041\leq n\leq 10^4.

题解

1x+1y+1z=1n+1n\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}+\frac{1}{n}

那就直接 z=nz=n,则有:

1x+1y=1n\frac{1}{x}+\frac{1}{y}=\frac{1}{n}

考虑裂项公式:

1n1n+1=1n(n+1)\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}

因此:

1x+1y=1n+1+1n(n+1)\frac{1}{x} + \frac{1}{y}=\frac{1}{n+1}+\frac{1}{n(n+1)}

于是得到:

{x=n+1y=n(n+1)z=n\left\{ \begin{array}{lr} x=n+1\\ y=n(n+1)\\ z=n \end{array} \right.

n=1n=1 时,x=y=n+1x=y=n+1,无解。

否则,按上述方案构造即可。

【Codeforces–743C】Vladik and fractions
https://www.tonyyin.top/blog/oi-notes/cf743c
Author TonyYin
Published at June 19, 2022
Comment seems to stuck. Try to refresh?✨