TonyYin's Blog

Back

题意#

见:21暑期AB组高端峰会 - Day3 - OSU - Zhengrui Online Judge

或:T207786 [ZROI#1922] OSU - 洛谷 - 计算机科学教育新生态

分析#

柯西不等式:

i=1nai2i=1nbi2(i=1naibi)2\sum_{i=1}^{n}{{a_i}^2}\sum_{i=1}^{n}{{b_i}^2}\geq (\sum_{i=1}^{n}{a_ib_i})^2

题目想要:

i=1tpici1=w0\sum_{i=1}^{t}{p_ic^{i-1}}= w_0

利用柯西不等式:

i=1tpi2i=1tc2(i1)(i=1tpici1)2=w02\sum_{i=1}^{t}{{p_i}^2}\sum_{i=1}^{t}{c^{2(i-1)}}\geq (\sum_{i=1}^{t}{p_ic^{i-1}})^2= {w_0}^2

移项得到:

i=1tpi2w02i=1tc2(i1)\sum_{i=1}^{t}{{p_i}^2}\geq \frac{{w_0}^2}{\sum_{i=1}^{t}{c^{2(i-1)}}}

不等式左侧即为答案,取最小值:

Ans=w02i=1tc2(i1)\operatorname{Ans}=\frac{{w_0}^2}{\sum_{i=1}^{t}{c^{2(i-1)}}}

可以 O(t)\mathcal{O}(t) 计算。

【ZROI–21暑期AB组-Day3】OSU
https://www.tonyyin.top/blog/oi-solution/zroi1922
Author TonyYin
Published at October 5, 2021
Comment seems to stuck. Try to refresh?✨